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Abstract. We have studied the magnetic phase diagram for the dilute alioys (Dy, Y -x)Ak
in the concentration range 0.10 € x £ 0.50. We find the systems to be disordered magnets
with random magnetic anjsotropy. For x € 0.30, the system vndergoes a single transition from
paramagnetic {PM) to spin-glass {SG) state. For 0.35 < x £ 0.50, a re-entrant coherent spin-glass
(csG) phase appears between the PM and s¢ states, formed by intrinsic nearly ferromagnetic
domains. The triple point is located at x ~ (.35, However, no evidence of any long-range
magnetic order was found in the concentration range studied. We have also determined the
temperature variation of the spontaneous Edwards—Anderson order parameter for x < 0.30. The
scaling analyses performed for the non-linear susceptibility indicate true phase transitions for
the pM~SG tine for x < 0.33, and yield values for the critical exponents 8, y and 8.

1. Introduction

In a previous publication [1] (paper I) we studied the static magnetic properties and critical
behaviour of the series of pseudobinary intermetallics Dy, ¥_,Als, and found them to be
disordered magnets, presenting a weak random magnetic anisotropy (RMA), as a consequence
of the dilution by yttrium. They crystallize in the Laves C-15 cubic structure, the Dy>+
and Y** ions randomly siting in a diamond lattice and the Al atoms forming a set of
tetrahedra around the rare-carth (RE) lattice [2]. DyAl; is magnetically well characterized.
It becomes a ferromagnet below T, = 61.5 K, according to low-field susceptibility, thermal
expansion, coercive field, magnetocrystalline anisotropy and magnetostriction measurements
[3-7], the easy magnetization axis being {100} [6, 8]. Anisotropy is large (Ky = 36 Kfion
at 0 K) [5], although the quenching of Dy3* magnetic moment by the crystal electric field
(CEF) is small [9,10]. YAl is a Pauli paramagnet [11,12]. In earlier studies [3,5] of
the magnetization mechanisms in the Dy,Y;_,Al, series we concluded that, even for the
‘concentrated’ regime x = 0.45, the systems are magnetically imhomogeneous, We will
discuss briefly why we expect these compounds to present RMA behaviour. First of all, the
difference in lattice parameters between YAl; and DyAl; (=~ 0.37%) can give rise to an RMA
energy contribution because of the large magnetoelastic coupling coefficient [7]. Moreover,
the CEF screening is different for Y and Dy, which could imply a lowering of the otherwise
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local cubic symmetry. Finally the spin—orbit scattering strength is different for Y and Dy,
and it can give rise, when RKKY (Ruderman—Kittel-Kasuya—Yoshida) exchange is present,
to large off-diagonal Dzyaloshinsky—Moriya exchange interactions, contributing to the RMA
effects.

The RMA systems have now been studied for over a decade [13-23]. Of paramount
interest are the questions of whether or not a phase of infinite {or very large} susceptibility
exists below some finite temperature T, in an RMA system, biased by positive exchange
interactions, and whether or not long-range magnetic order is precluded by the presence
of RMA in Heisenberg-like systems. It was demonstrated by using several arguments and
approximations [24,25] that RMA destroys long-range magnetic order in less than four
dimensions (d < 4). In fact, carly theoretical developments {26,27} demonstrated that a
uniaxial RMA gives rise to an effective Hamiltonian of the same kind as that for random
exchange systems with Ising symmetry. On the other hand, it is quite natural to expect that
BRMA might produce a spin-glass-like state, similar to the one induced by random exchange
and frustration. However, in dealing with RMA systems one should distinguish between
two situations, depending on the ratio between the exchange and RMA energies. At 0 K,
when the ratioc Dg/Jy (where Dy is the strength of the RMA CEF and Jp is the average
positive exchange interaction constant) is large (strong anisotropy), the system eventually
evolves into single spins randomiy frozen: the spin-glass (SG) phase. At the other extreme,
for small Dy/Jy values, the system will divide into quasiferromagnetic domains, becoming
the so-called coherent or correlated spin-glass (CSG) system [28,29]. Indeed, a crossover
between the two phases can occur as the temperature increases and the ratio Dy/Jy weakens
[28].
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Figure 1. Magnetic phase diagram of the transition temperatures Tsg (P-8G transition) and
T, (cSG-5G transition) versus Dy** concentration x for (Dy, Y)-.)Aly, obtained from sqQuip-
based DC magnetization measurements (x). The symbols ¢ denote the 'freezing’ spin-glass
temperatures {7z} at f = 15 Hz, obtained from Ac susceptibility measurements.

The above effects were observed in the present diluied compounds, because both the Dy
concentration x and temperature affect Dg/Jo. For x < 0.30 the systems undergo a transition
from paramagnetic (P) to SG state; however, for 0.30 < x £ 0.50, a ¢SG phase is re-entrant
between the P and SG phases (see figure 1), the transition happening at temperatures 1;(x).
For the P-CSG transition, a ferromagnetic-like scaling analysis was performed, based on a
modification of the equation of state for weak RMA systems proposed by Aharony and Pytte
[30]. From the deduced critical exponents, only the pure DyAl; system can be classified as
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a true ferromagnet. Further, we showed that for x = 0.62 the system suffers a first-order
magnetic phase transition to a quasi- or random-ferromagnetic state [31], with a crossover
to a pure ferromagnetic state at x = 0.87. In the present work we have focused on the spin-
glass behaviour in these alloys, which, to our knowledge, has never before been observed
in crystalline Laves-phase compounds, although spin-glass order has been observed in the
related amorphous alloys GdAl, [32], (LaGd)Aly [33] and Ce(FeggAlpz)e [34].

2. Experimenial details

The dilute (Dy,Y1-x)Al alloys (0.10 € x < 0.50) were prepared by argon arc melting
starting from Dy and Y of 99.9% and Al of 99.999% purities, respectively. The resulting
buttons were remelted several times for homogeneity and annealed for one week at a
temperature of 800 °C. The compound lattice parameters were determined from x-ray powder
diffraction and were found to vary reasonably linearly with x (Vegard's law), with values
in good agreement with those found in the literature [2] for pure DyAl, and YAL; (see
figure 2). Metallographic analyses were also undertaken using optical and scanning electron
microscopy (SEM) in the back-scattered electron (BSE) mode. A full account of this study
may be found elsewhere [9, 10]. No evidence was found for a secondary phase in any of
the samples reported in this paper. The actual sample concenirations (see table 1) were
determined from a wavelength dispersive x-ray analysis, accurate to 2% [10]. Uniformity
of the Dy dilution was checked through the variation of paramagnetic Curie temperatures
with x (see [10] and paper I}. For simplicity we will refer to the sampies throughout this
work by their nominal concentrations.
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Figure 2. Dependence of the cubic lattice constant versus Dy concentration x for the
Dy, Y- )Al; senes.

Two kinds of magnetic measurements were performed. PC magnetization measurements
were carried out using a commercial SHE (SH.E. Co., CA 92121, USA) VTS-50
SQUID (superconducting quantum interference device) magnetometer on polycrystalline,
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rectangular-shaped samples about 3 mm and 6.5 mm in length and 1 mm square. The
precision and stability of the temperature were roughly 0.01 K, and the accuracy of the
measured moment was about 1 part in 10*. Magnetic fields from 0 to 5 T were produced
with a shielded, superconducting magnet. Great care had to be taken upon changing and
latching a new field as the NbsSn shield was prone to trapping substantial amounts of
flux. Best respits were obtained by latching a genuine zero field (obtained by heating
the superconducting Nb3Sn shield above its transition temperature, T;, then fixing to zero
value the solencid current and finally cooling down the shield below T;), and then setting
subsequent fields in ascending order and taking data accordingly. When sufficient time was
allowed for any residual supercurrents ir the NbaSn shield to decay (nominafly 5 min),
the accuracy in the field setting was generally 5% or better. For low-field measurements
{Hypp € 1000 Oe), an NBS magnetic-moment standard of Pd was used to calibrate the field.

Measurements were taken in a zero applied field, obtained and calibrated as indicated
above, by cooling the sample to the lowest accessible temperature of =~ 1.6 K and then
measuring the magnetization while warming, applying a static magnetic field of 0.8 Qe.
Data acquisition was fully automated on the SQUID magnetometer, and a total of 10 to 15
points were averaged to obtain the magnetization at a given temperature. In the study of
high-susceptibility materials, which can be the situation here, demagnetizing effects must
be treated carefully. The demagnetizing factor was estimated for each sample, the values
ranging between 0.071 and 0.143.

The AC susceptibility measurements were performed using a modified Hartshorn mutual
inductance bridge, working at a frequency of 15 Hz and a peak field value of roughly
35 mQOe. Measurements were taken from =~ 2.2 K up to well into the paramagnetic regime
for each of the compounds with nominal Dy concentrations x = 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45 and 0.50. The measurement allows the determination of the real
and imaginary parts of the AC susceptibility, xj- and xic, respectively. These results are
presented in section 4.1,

3. Theoretical background

We will briefly outline the theoretical results that are relevant to our measurements in the
dilute (Dy;Y1_x)Al, magnets. As mentioned before, Aharony [26] considers a system
described by the Hamiltonian

H=- Z Jij8i - 8; — Do Z(&; - 8:)’ (M
iJ i

where S; is an m-component spin located at the ith site of a d-dimensional lattice, Jj; is the
exchange interaction constant between spins 7 and j, and @; is a unit vector that randomly
points in the direction of the magnetic anisotropy at site i, having fixed strength Dy. Using
this Hamiltonian, Chen and Lubensky [27] (see also [35], which is a generalization of
Chen and Lubensky’s transition-temperature equation to high-spin RMA systems) showed
that the system undergoes a spin-glass ordering transition at a temperature controlled by
the anisotropy strength Dg, i.e. T = D3(1 — 1/m)/[m(m + 2)]. The Hamiltonian (1)
was transformed to a form identical to the one used by Shemington and Kirkpatrick (SK)
[36] for the random-exchange $G model, except that the site indices are replaced by spin
components [35,37]. Indeed, all of the resuits obtained in the SK model are translated
to the RMA magnets, including the existence of a phase transition temperature, The only
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significant difference is that now the Edwards—Anderson (EA) order parameter is defined in
a slightly different form [35,38], i.e. g = (1/m) }';, (S;’Sf )n, where {...}, is an average
over the n-replicas space.

Now, depending on the anisoiropy-to-exchange ratio, RMA systems can sustain two
kinds of magnetic ordering, as was noted in section 1. At low enough temperatures,
T <« Ty, the anisotropy is strong and the system becomes an SG (or a speromagnet in
Coey’s nomenclature [14]). At higher temperatures, Tsg < T < Tt, the system becomes
a oGS [28], where the spontaneous magnetization remains zero, but the system becomes
divided into quasiferromagnetic intrinsic or Imry and Ma domains [39].

In the ¢SG state the local magnetization changes direction smoothiy only over long
distances L > &, the ferromagnetic correlation length. For d = 3, & = ’—zséa(Hex/H,)z,
where £, is the distance over which the RMA local easy directions are comelated,
and H., and H; are the effective exchange and anisotropy fields, respectively. The
crossover from weak (£ > &,)} to strong (§ =~ £,) RMA is determined by the criterion
H./Hey = (Hy/ Hex)air =~ 1-3. This opens the possibility [28] of a re-entrant $G phase in
some range of Dy>* concentration. For single-ion anisotropy, the RMA strength 8, = H;/Mp
depends strongly upon T but weakly upon x, while the exchange stiffness o = (Hex/Mo)E?2
should be independent of T, but increases with increasing x. Therefore the condition for re-
enirance [28] should be H[Tsc(x)]/ Hex(x)} = (Hy/Hex)an. 1t is clear from this expression
that, as x increases (so that H, also increases), so does H,[Ts;]. We believe that re-entrance
has been observed in the (Dy,Y..x)Aly systems (see figure 1 and table 1).

We will next consider some aspects related to the scaling behaviour. Given the strong
similarities between random-exchange spin glasses and RMA systems, the scaling results
of Suzuki er al [40.41) for the 3G non-linear susceptibility are likely to be applicable
to the present system. If one defines the non-linear susceptibility in the usual way as
¥ = (M/HY — (M/H)p_0 = ¥ — X0, then it is easy to deduce [40,41] the following
scaling form for xa,

xu = 18 F(HY /1Y HPY, 2

Equation (2) can be written in the equivalent form yn = H*?g(z/H%?), by using the
scaling relations ¢ == S+ and § == ¢/3. From the previous expressions it follows [42,43]
that xu ~ H%~7, for t > 0 and small H, and yy ~ H¥S, for T = Tsg.

Let us consider now the initial susceptibility and the spin-glass order parameter. The
low static magnetic field susceptibility, xo, is a simple probe with which to determine the
local magnetic $G order parameter [32,44]. In fact, when magnetic interactions are present,
the Fischer [44] equation in a finite applied magnetic field can be written as

M/H=x=C(1-g)/[T —8(1—4g)] (3)
where C is the Curie constant, which, for a rare-earth system, is
C = (N/3kp)l(g — DupTJ(J +1). 4)

Here N is the number of RE ions per unit volume and & =~ N{Jy/kg) is the paramagnetic
Curie temperature. Also, in equation (3), ¢ must be replaced by ¢* = g/(g — 1)2J(J + 1).
It is important for the following discussion to recognize that the EA order parameter g and
the non-linear susceptibility are proportional [40,45], i.e.

Xm = —Xooq )
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where xg0 = C/T is the regular Curie paramagnetic susceptibility. For low enough vaiues

of the argument, we can expand f(x) in equation (2). Keeping only the first two terms in
the expansicn and using equation (5), we obtain

g = —[£0)/xcolt? — [0V xol H*t™¥ + ---. (6)

This is a strong indication that ¢ contains a spoataneous part, g, (for H = 0), and a
divergent singular one, gung. We have, fiom (5) and (3), neglecting the # term in equation (3)
for now,

X = Xooll -~ ({Isp — Gsing)]- N

Then, because ggng = 0 as H — 0, the measurement of the initial susceptibility yields the
spontaneous SG order parameter below Tyg [32,46].

10+ : (a) a3l
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= b - L
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Figure 3. Thermal variation of the real part of the initial Ac susceptibility x),-, measured in an
applied AC field of 35 mOe peak value at a frequency of 15 Hz (in (b} the arrows indicate the
€5G-8G ‘freezing’ temperatures, Ty see table 1 and section 4.1 for details).

o247

MAGNETIZATION (G)

O {t 2 3 4 5 6 7
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Figure 4. Zero-field cooled DC magnetization versus temperature, measured in an applied ficld

of 0.8 Qe, for Dy concentrations x < 0.30. Curves have been offset for clarity, but the relative
sizes have been preserved.
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Table 1. ‘Freezing’ spin-glass temperatures for an AC measuring tow magnetic field of frequency
15 Hz (Ty), spin-glass transition temperatures (T} and paramagnetic Curie temperatures (4) for
the diluted Dy, Yy Alp intermetallic compounds. Also quoted are the critical exponent values
for the BEdwards—Anderson order parameter g* (sce section 4.2 for details).

Concentration x
i Tigh &

nominal real (K) (K) (K) B

0.10 0.107 — [.58 —_ —
0.15 0.157 3.3 2.64 1.8+40.1 1.1
0.20 0.208 43 4.46 23105 1.1
0.25 0.265 4.4 451 24405 1.1
0.30 0313 59 5.60 4403 1.1
0.35 0.370 4.0 4.00 — —
0.40 0417 KR 5.00 — —
(.45 0.468 23 —_ — —
0.30 0517 —_ 16 —_ —

* From Ac susceptibility measurements (this work).
b From pC magnetization measurements (this work and [17).

4. Experimental results and discussion

4.1. Low-field AC susceptibility, transition temperatures and phase diagram

We have plotted the real part of the AC susceptibility, ¥, versus temperature in figures 3{z)
and (p) for 0.15 € x € 050 in the (Dy, Y _,)Al system. For x £ 0.30, maxima
are observed at temperatures Ty, which we identify with the slow ‘freezing’ of the spins
at the measurement frequency of 15 Hz. The zero-field cooled (ZFC) DC magnetization
measurements also display broad maxima at temperatures Tsg close to the corresponding
T; values (see figure 4 and table 1). We should expect values of Tsg smaller than T, as
should happen for static and dynamic magnetization measurements, but the small differences
observed between them are not always of the same sign, and therefore they should not be
ascribed to the above expectation. Such differences are probably due to thermometry effects
for the different experimental set-ups. For x > (.30 (figure 3(b)), the first peak in the AC
susceptibility measurements develops into an elbow, and a second peak appears, which
we identify with the PM—CSG transition temperature T,. For concentrations x < 0.30,
a thermal irreversibility was observed starting at Tyg between the ZrC isofields and the
isofields measured cooling in field (FC).

Based on all these results, the magnetic phase diagram was derived (see figure 1). Below
the PM—SG line the system is in a spin-glass state; above the triple point x = 0.30 the 5G is
re-entrant into a CSG state, below the SG—CSG line. As expected theoretically (see section 3),
above the triple point x = 0.30, Tsg in fact decreases as x increases.

Further evidence is gained from the imaginary component of the initial AC susceptibility,
Xac» Which is plotted in figures 5(a) and (b). For x < 0.30, weak but well defined peaks are
observed at slightly lower temperatures than those for x,c, the maximum of x} coinciding
with the inflection point of x4.. For x 2 0.35 the SG—CSG transitions are now better defined
than in figure 3(b) through the shoulders (x = 0.35, 0.40) and peak (x = 0.45} appearing
at temperatures where the shoulders of x,. change more rapidly. Such features have been
seen in other spin-glass systems [47, 48].

4.2. Low- and high-field magnetization: spin-glass order parameter and transition lines

4.2.1. Spin-glass order parameter. We have used equation (3) and o, obtained from the



4786 A del Moral et al

S 3 v r : . r . r
I {a) ] {b)
' ] " * x=035]
3L 1 3 °p 3« 4 X =040 |
= " 1 & & X =045 ]
- | K
=05} | 1
1k
0 N e . N . . 0 ey -
0 2 4 ) 8 10 0 5 10 15 20
TEMPERATURE, T(K) TEMPERATURE, T(K)

Figure 5. Same as figure 3 for the imaginary part of the initial AC susceptibility xj..
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Figure 6. Thermal dependence of the reduced spontangous spin-glass order parameter g3y below
the PM-5G transition temperature Tsg, determined at an applied field of 0.8 Qe, for x = 0.15
{#), 0.20 (A), 0.25 (@) and 0.30 (). The error bars represent the unceriainty introduced by
the uocertainty in the determined paramagnetic Curie temperature @ values (see table 1 and
section 4.2 for details).

low-field DC magnetization measurements (figure 4), to determine the thermal variation of
the spin-glass order parameter g* for the different (Dy,Y,_,)Aly compounds, as shown
in figure 6. For the compounds with x < (.35, the CSG phase is not present, and the
determination of the paramagnetic temperature, 8, by extrapolation of 1/x,. down to zero
is quite straightforward. However, in order to obtain a reasonable temperature variation for
g* it is necessary to extrapolate in the region near Tgg due to the strong curvature of 1/}«
near T [46]. In figure 7 we show the plots of 1/} versus terperature, the straight lines
indicating how the # values were obtained. We should mention that such curvature is usually
ascribed to clustering behaviour, as we show that it happens, in section 4.2.2, below. The
values of @ are positive for all concentrations, indicating a dominant ferromagnetic exchange
interaction, as assumed in section 3. The linearity of the plots in figure 6, close to Tsg,
indicates that 8 = 1, as also shown by the scaling g4 ~ ##, according to equation (6)
for H — 0. Inasmuch that yg was obtained at an applied field of 0.8 Ce, the scaled ¢
parameter should be fairly close to gsp. In fact the 8 values so obtained (see table 1) are
in fair agreement with the values obtained below from the non-linear susceptibility. These
results lend strong support to the claim that the PM—SG transition for x € 0.30 is indeed a
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Figure 7. The inverse susceptibility l/xf,\c against temperature for the (Dy,Y(_,)Alz alloys.
Also shown are the linear extrapolations of 1/}~ near Ti (full lines) in order to determine the
paramagnetic Curie temperature @ values, from the x-axis intercepts.

T T T T T T 9.0
0.075 {a) 6.4 N )
— o= t
=) 438 &> B2
£ E] 8.5
g — s .,
; 2‘ “ 86D Ca 1 hCa
&} z 8.0
E noss 2 a3 b
3 - 26 s H t
5 5
= =
e —o—200e ] g
= —e—1300 Ca 15 kOs 2k
0.055 : . . . . . . 34 10.8 12.8
1.5 25 a5 4.5 55 1.5 25 35 4515 25 35 45
TEMPERATURE, T (K) TEMPERATURE, T (K)

Figure 8. Thermal variation of the magnetization in increasing magnetic fieids 2.8 Qe £ H £
2 kQe) for the compound (Dyp 20 Yo.an)Al. The wide cusps signal the onset of the 5G phase,

true phase transition.

4.2.2 Transition lines. SQUID-based DC magnefization measurements were performed at
several fields from =~ 1 Oe to 5 kOe at temperatures from 1.7 K to well into the paramagnetic
region. In the concentration range 0.10 < x < 0.30, the magnetization at low fields shows a
broad maximum around Tsg, which shifts towards lower temperatures as the field increases
(see figures 8(«) and (&) for the compound x = 0.20). The SG transition lines are of the
Gabay-Toulouse (GT) type, i.e. being fitted by the law H = Hgr[l — T(H)/Tscl*/? [49],
obtaining from the fits the values Hgr = 2.4 £ 0.1 and 2.3 + 0.1 kOe for x = 0.20 and
0.30, respectively, indicating a Heisenberg character for our systems. At this point, it is
interesting to speculate on whether or not clustering in these systems might be inferred from
the value of Hgr. The MFA gives the result [48]

2 112
Ta) i ®)

Meluster HoT = (m

By using the previous values for Hgr one obtains 57up and 74itp per ficlster for x = 0.20
and 0.30, respectively, which suggests a small amount of clustering since the Dy moment
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is 10us. As we said in section 4.2.1, this result fits in well with the curvature of I/x;¢
near Tsg.

4.3. Arrot plots

For RMA systems the initial susceptibility xg = (M /H) yo must approach a limiting value
o {Jo/ Dg)* [28,50] below the transition temperature Ty, or diverge (as in the case where
Dy ~ ). In practice, however, the experimental susceptibility must be limited by the
demagnetizing factor N, ie.

1 Xexp = 1/x0+47N. (9)

The divergence of xq follows from an equation of state derived by Aharony and Pytte [30]
for weak RMA systems.
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Figure 9. Armrott plots of M? versus H/M for x = (.20, 0.30, 0.35 and 0.40 compounds (DL
denotes the expected demagnetization limit values for i/ M).
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To test these predictions we have made Arrott plots in the usual form of M? versus H/M
at the 8G phase, as shown in figures 9{a)—(d). We can see that for the higher concentrations,
x 2 0.35, o reaches the demagnetizing limit, but it does not for the lower concentrations.
In addition, we note that the downwards curvature of the Arrott plots for concentrations
x = 0.35 and 040 is in agreement with the predicted one by Aharony and Pytte [30] for
weak RMA systems. Instead the curvature is the opposite for the lower concentrations. This
seems to indicate a continuous decrease of Dy/Jy with Dy content.

4.4. Non-linear susceptibility

Because the effective Hamiltonian for strong enough RMA systems is formally identical
to that for the case of random exchange, they should behave as spin glasses below the
CSG-SG or PM-SG transition lines. Thus, according to scaling theory [40], it is the non-
linear susceptibility ¥, that should exhibit critical behaviour near Ty (see section 3) (a
preliminary study of xp for the present systems was published elsewhere [31]). We have
arbitrarily taken for xo the values obtained at the lowest field measured, great care being
exercised in correcting the field values for remanence effects in the SQUID superconducting
coil (see also section 2). The fields used to obtain xq respectively were: 1.8 and 2.13 Oe
.for the x = 0.20 and 0.30 compounds. In figure 10 we show the thermal variation of
for the x = 0.30 compound in increasing magnetic field. There is no shift of the maxima
with field; inasmuch as yp is the effective order parameter in SG systems, according to
equation (3}, the maximum of x,; signals the transition temperature T5g.

o
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T T 3
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n “ Py
(=] [=) (=)
T T T

|

NON-LINEAR SUSCEPTIBILITY,10® *ni{emusg.0e)
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Figurce 10. Non-linear susceptibility for (Dvpi0Yo)Alz. The linear susceptibility used to
compute the non-linear susceptibility was taken in a field of 2.13 Oe The data, from the lowest
to the highest curves, were taken in successively increasing fields of 42, 92, 142, 192, 202, 492,
742 and 992 Oe.

We will now turn our attention to the scaling behaviour of x with field. Plotting xm
versus H as done in figure 11 (see section 3), we can extract the values 4 = 4.5 and 4.4
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Table 2. Critical exponents in some dilute Dy, Y- ;Al> alloys for the non-linear susceptibility.

x B $ Y
0208 — 44
1.3% 440 4.4¢

0.313 — 4,5 - —
1.3 4.4b 4.4°

* Obtained from xn ~ H2# scaling plots.
b Obtained from yu/tf versus H /t85/2 scaling plots,
¢ Obtained from the scaling relation y = {5 — 1).

for x = 0.30 and 0.20 respectively. The plot is fairly linear for low fields (H < 700 Oe),
but our estimated values for & are somewhat larger than the values for other spin glasses
(see table 2), although large values have been observed in several SG systems such as a-
GdAl; (6 = 6.1) and CuMn o (§ = 5.7) [20,52]). We have also performed a scaling
analysis of the form suggested by equation (2). In figures 12(a) and (b}, we plot, in double-
logarithmic scales, xu/Itlf versus H/|t|#%2, for the x = 0.20 and 0.30 compounds, where
t = {(Tsg — T}/ Tsq. the values used for Tsg being given in table 1. The critical exponenis
obtained from the best collapse of the data points are displayed in table 2. The agreement
with the values directly determined is reasonably good. On the same plots are shown the
lines of H? and H*? for the ¢ > 0 and ¢ = O isotherms.

4.5. Critical relaxation time

At the phase transition from paramagnetic to 3G, the system should suffer critical slowing
down when the transition temperature is approached from above. Any relaxation or response
time should diverge as [53] T o« t~%", where z is the dynamic critical exponent and v is the
correlation length critical exponent.

In order to investigate the critical slowing down in spin glasses, where a broad spectrum
of relaxation times seems to exist, even at the paramagnetic regime, we can consider the
expressions of y'(w) and x"(w) within the Debye approximation, valid for an SG at the
paramagnetic regime [54], i.e.
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Figure 12. (a) Scaled non-linear susceptibility xu/tf of (DypaoYosoAls versus the scaled
magnetic field /1832 where r = (T — Tsg)/ Tsg. The determined critical exponents and Tsg
values giving the best ‘collapse’ of the data points are 8 = 1.3, 8 = 4.4 and Ty = 446 K,
respectively. The full lines give the expected asymptotic slopes of the scaling functon. Data in
fields < 500 Oe and T > Tsg are included. {#) The same plot for (Dyp.auYo.70)Alz, using the
same exponents, with Tsg = 5.60 K.
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H 1+ wzrz)
u P M(T)p(twT

=5 )| s ao

where p(7) is the relaxation time, 7 is the distribution function and @ is the measuring
AC magnetic-field frequency. In the case of having a system with a single relaxation time,
the experimentally determinable quantity x”/wy' directly lends the value of such a time.
However if, as in our case, we have a time distribution p(t), we can only write

x(w)fwx' (@) =7 (11)

where T is certainly a relaxation time but, being frequency-dependent, is not a feature
fully characteristic of the 5G system. Only if we are within the regime wr « 1 does T
represent a true characteristic or average time [55] of the system, i.e. w-independent, as
can be immediately verified from equation (10). Now, if we apply equation (11} to our
AC susceptibility results, taken at the fixed frequency w/2m = 15 Hz, we will obtain some
characteristic average relaxation time only if the above wt < 1 condition is fulfilled, for
instance for times t < 1072/w (a thorough study of the distribution of relaxation times
could have been performed by measuring x'{w, T) and x"(w,T) at variable frequency,
but this is not feasible with our experimental set-up). Although we are aware that such an
average time is not fully representative of all the relaxation times of the spectrum of the
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Figure 13. Thermal variation of the average relaxation time 7 (see meaning in text), near and

above the pM-sG transition temperature, Tig, for x = (.20, 0.25 and 0.30, The lines are guides
to the eye,

system, nevertheless we have plotted its thermal variation {see figure 13) for the compounds
suffering a PM—SG transition. The observed very rapid increase of T on approaching Ty from
above agrees well with the above proved phase transitions at T5g, and gives us additional
information, although only qualitative, about the existence of those phase transitions.

5. Conclusions

We conclude from our magnetic measurements that the crystalline Dy, Y)_,)Al;
pseudobinary intermetallic compounds are disordered magnetic systems possessing random
magnetic anisotropy. The magnetic phase diagram has been determined and shows that for
x > 0.35 the system presents two magnetic phases, a high-temperature correlated spin-glass
phase, and a spin-glass phase at the jowest temperatures, x = 0.35 being the triple point.
For concentrations x £ 0,313, we have shown that a true phase transition from paramagnetic
to spin glass does exist. Besides, the existence of a Gabay-Toulouse line, for x £ 0.313, on
crossing from paramagnetic to SG phase, points to a Heisenberg character for our systems.

From the Arrott plots we have shown that no long-range magnetic order appears in any
of the systems studied, and also that the ratic Dy/Jp, between the RMA CEF strength and
the exchange strength, should decrease with the Dy content.

From the low-field DC susceptibility and using the Fischer formula [44], considering the
presence of positive exchange interactions, we have been able to determine the temperature
variation of the spontaneous Edwards—Anderson order parameter, which shows a § exponent
of 1.1, close to the theoretical MFA prediction (8 = 1) [40].

The non-lineaer susceptibility, xn. for these RMA systems should behave as it does in
the case of random exchange spin glasses, inasmuch as both cases are described by formally
equivalent effective Hamiltonians. In fact we find that x.; scales as yy = =2 f(H?/t%%),
thereby showing critical behaviour. Somewhat larger values are obtained for the exponent
&, which governs the field scaling behaviour of y,. However, large values for § have also
been found for other archetypal spin glasses and in amorphous RMA systems. The critical
exponents so determined, 8, § and y, are summarized in table 2.
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